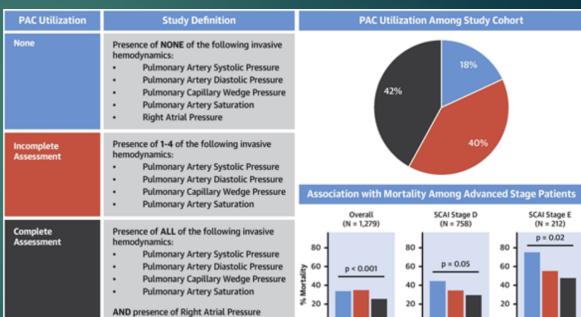
Right Heart Catheterization Overview

NICK ASHUR, MD ADVANCED HF/TRANSPLANT FELLOW, PGY-7

Learning Objectives


- 1) Review Indications for RHC
- 2) Detail RHC procedure and interpretation of waveforms
- 3) Utilize hemodynamics to phenotype cardiogenic shock and classify PHTN

Indications

- Guiding medical therapy in decompensated HF and cardiogenic shock
- In patients being considered for advanced therapies
 - Class I indication for PVR measurement pre-listing***
 - Repeat every 3-6 months for listed patients
- Optimization of LVAD speed
- Confirm the diagnosis of PH and subsequently phenotype PH

"Escape ESCAPE"

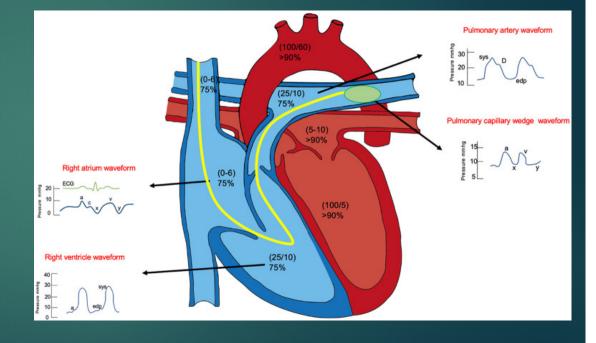
- ► Prospective Trial (Rosello et al.) → short- and long-term mortality reduced with PAC in patients with CS
 - Mortality benefit in non-MI shock
- ► Garan et al. → complete PAC data prior to MCS resulted in significantly lower mortality.

Key Point

- PAC is a DIAGNOSTIC tool that by itself cannot improve a patient's condition
- Therefore, focus should be on how to translate the HD information from PAC into appropriate interventions that lead to better outcomes
 - ► Earlier detection of clinical deterioration → expeditious escalation of support
 - Uncover RV failure that may need BiV support
 - Assessment of response/weaning from inotropes and MCS

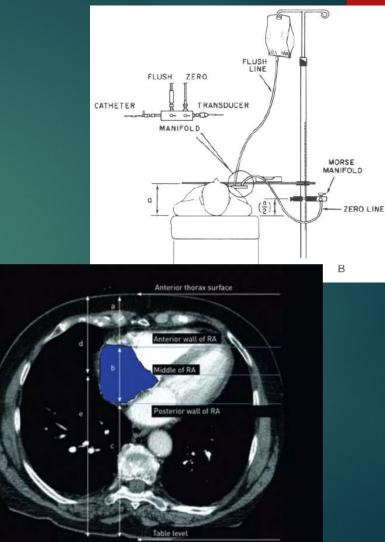
Mechanics

Anatomy of a Pulmonary Artery Catheter


Proximal port for RA monitoring and medication/fluid administration Thermistor port located proximal to the balloon tip for thermodilution measurements

> Distal port for PA monitoring and checking mixed venous blood gas

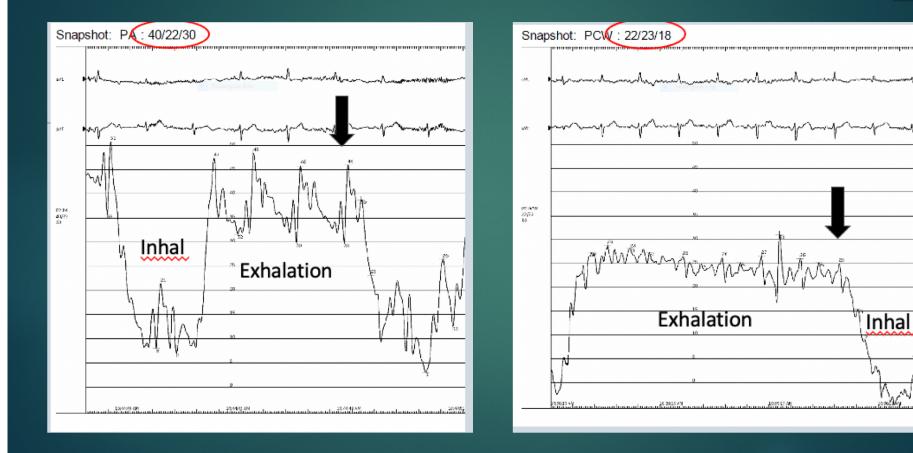
> > - Balloon port


Placing the PA Catheter

- Common routes of access include the IJ, femoral, or basilic veins
- Always inflate balloon while advancing and deflate while retracting
- Catheter, itself, is often curved to help guide placement

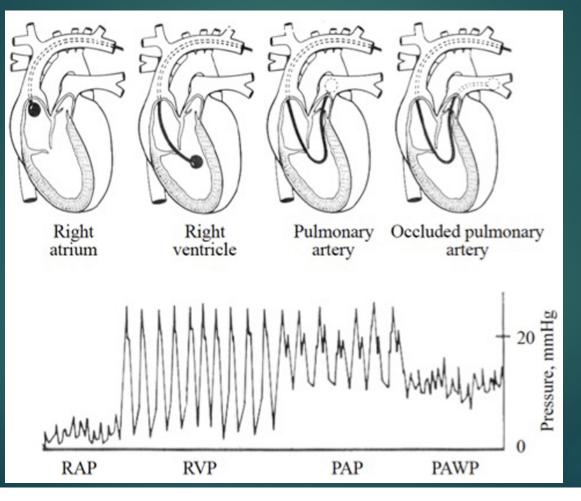
Taking Measurements

- The transducer must be leveled at about the mid chest level, about 5cm below the sternal border
- Pressure transducer should be zeroed to atmospheric pressure at the level of the LA.
 - LA is at midthorax in 97% of patients

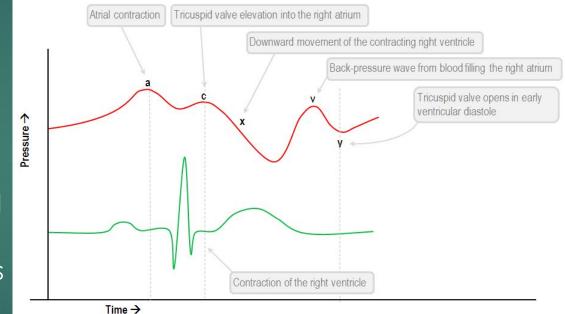


Baim DS and Grossman W. Cardiac Catheterization, Angiography, and Intervention. 5th Edition.

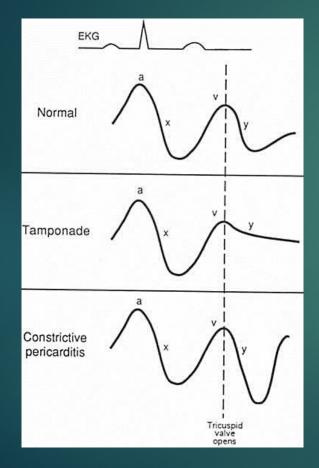
General Rules


- ► Inhalation → drop in intrathoracic pressures → drop in pressure measurements
- All pressure measurements should be taken at endexhalation
- Significant respiratory variation can be seen in obesity, COPD, OSA
- Always confirm computer measurements with personal review
- Downstream pressures can't be higher than upstream pressures (ie PCWP shouldn't be higher than PADP)

Breathing and Waveforms


Ŵ. M

"As the Swan Swims"



Right Atrial Tracing

- A wave: atrial systole
- X descent: RA relaxation and RV contraction
- V wave: RA filling with closed TV
- Y descent: TV opening and passive filling of the RV
- Normal RAP 7 mmHg or less
- Document presence/absence of Kussmaul sign

RAP Abnormalities

Deep X and Y descents seen in constrictive pericarditis

- Constriction limits total volume of blood that can be accommodated by heart during diastole
- ► Accentuated early rapid ventricular filling 2/2 high atrial driving pressures/unimpeded ventricular relaxation → rapid Y descent
- Prominent X due to preserved atrial relaxation and exaggerated ventricular longitudinal contraction
- ► Deep X (systole), shallow Y (diastole) in tamponade → flow to ventricles is impeded throughout all diastole, and subsequently little/no Y descent
 - "Flat Y Tamponade FYT"

RAP Abnormalities

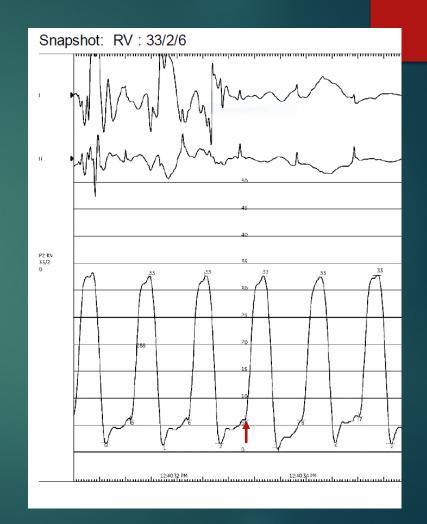
Tricuspid Regurgitation

Severe TR features a prominent V wave

- V > 1.5X A wave or larger than mean RAP by >5 mmHg
- RA fills from venous return AND regurgitant volume during systole
- Other cause of prominent V wave?
 - ► Decompensated RV failure → RA volume overload surpasses RA compliance
 - Generally speaking, V wave size correlates inversely with atrial compliance

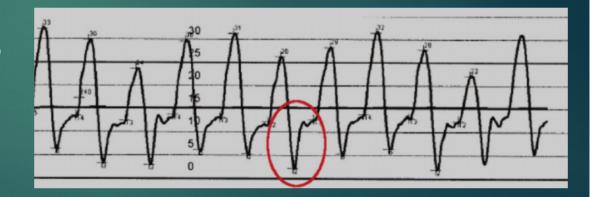
Other RAP Abnormalities

Prominent A wave?

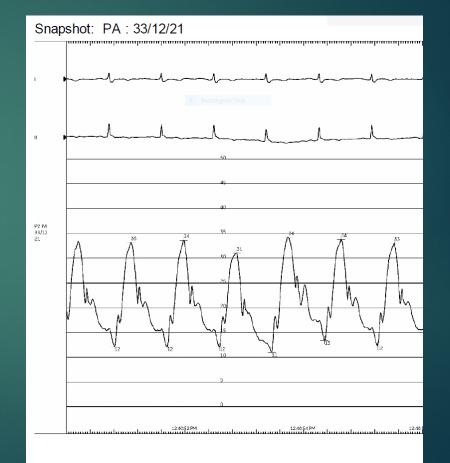

- RVH, TS, AV dyssynchrony
- Reflects reduced ventricular compliance -> A wave correlates inversely with RV compliance (V wave correlates inversely with RA compliance)

Summary of RAP Abnormalities

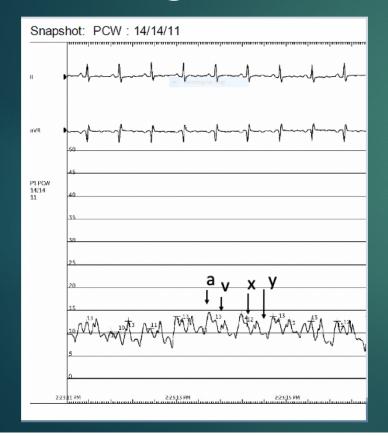
- \blacktriangleright Deep X and deep Y \rightarrow constrictive pericarditis
- ▶ Deep X and flat Y (diastolic flow blunting) → tamponade
- \blacktriangleright Large V wave \rightarrow severe TR and/or RV failure
- Large A wave -> impaired RV compliance, AV dysynchrony, TS


RV Pressure Tracing

- Step up in systolic pressure
- Normal RVSP is 35 mmHg or less
- Normal RVEDP is 8 mmHg or less


Dip and Plateau Sign

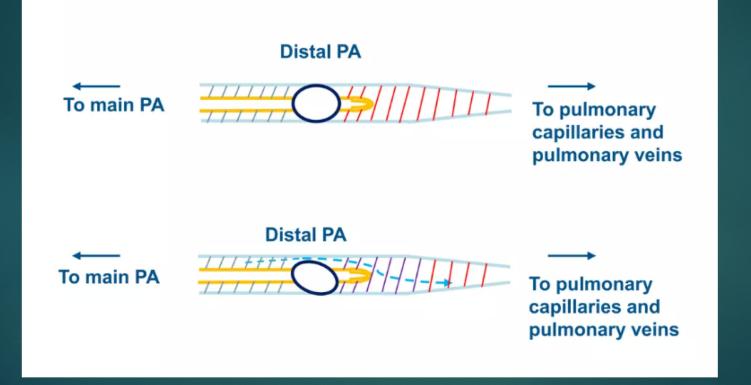
- Seen in RCM, CP, and RV failure. Sometimes in bradycardia as well
- Early diastolic dip
- Followed by "plateaued" high diastolic pressure late diastolic filling is abbreviated and halts abruptly



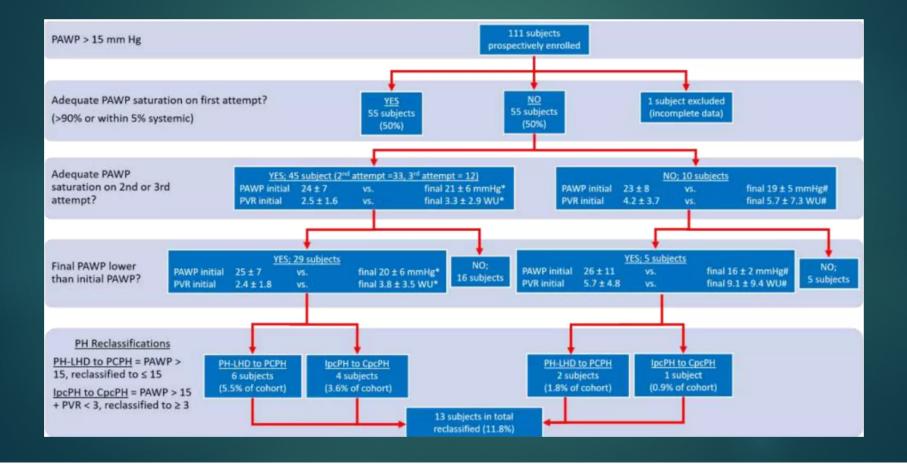
Pulmonary Artery Pressure Tracing

- Report systolic, diastolic, and mean pressures
 - What mPAP defines PHTN?
 - ▶ <mark>20 mmHg.</mark>
 - Moderate PHTN >35 mmHG.
 Severe >45 mmHg
- Note dichrotic notch from closing of the PV
- Pressure falls during diastole (rises in RV due to filling)

Pulmonary Capillary Wedge Tracing



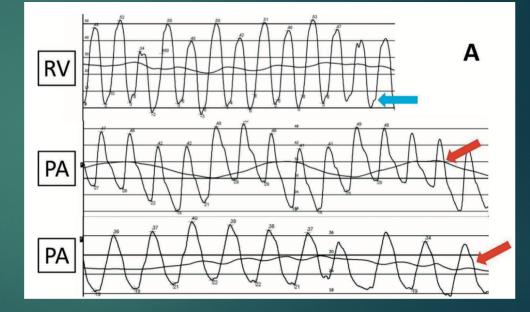
- ► A wave: left atrial systole
- X descent: LA relaxation and LV contraction
- ► V wave: LA filling with closed MV
- Y descent: MV opening and passive filling of the LV


Pulmonary Capillary Wedge Tracing

- Approximation of LAP and in absence of MS LVEDP
- - In sinus rhythm, average the A wave
 - In afib, measure the pressure 130-160 msec after QRS and before the V wave
- Normal PCWP is 12 mmHg or less (up to 15-18 mmHg may not lead to congestion in those with increased pulmonary capillary lymphatic drainage)
- Check a PCWP saturation whenever >15 mmHg to confirm occlusion
 - ► Truly wedged catheter → oxygen saturation >90% or within 5% systemic oxygen saturation

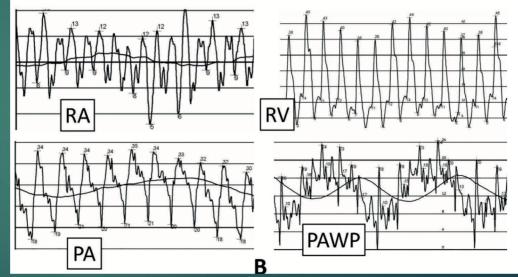
PCWP Sat

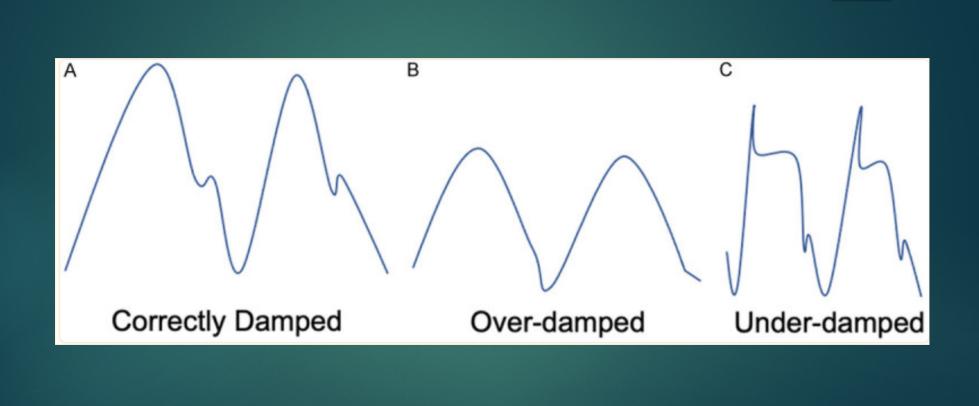
PCWP Sat



Abnormal PCWP Tracing

- Large V wave (>10 mmHg larger than mean PCWP or 2X mean PCWP)
 - \blacktriangleright Severe MR \rightarrow LA fills from venous return and regurgitant mitral flow
 - ► Decompensated LV systolic of diastolic failure → impaired LA compliance and increased LA volume beyond LA compliance
 - MS, VSD, other causes of impaired atrial compliance (atrial fibrosis)
- ► Large A wave → impaired LV compliance, AV dysynchrony, MS
- Absent A wave A fib


Overdampening

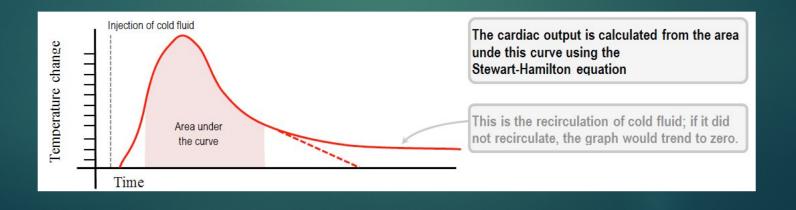

- Occurs when air is introduced into catheter or tubing
 - Loss of dichrotic notch in PA tracing
 - Blunted RVED inflection point
 - Reduction in amplitude of tracing
- Address by flushing

Catheter Ringing (Underdampening)

- Occurs when frequency of transmitted waveform (HR) approximates natural resonance frequency of transducer system
 - Falsely increases amplitude of waveform
 - May be exacerbated by microbubbles in system
- Address by flushing or introducing a denser fluid (blood) into catheter to alter resonant frequency

High-Yield Hemodynamics

Cardiac Output


Gold standard is direct Fick...but requires VO2 measurement

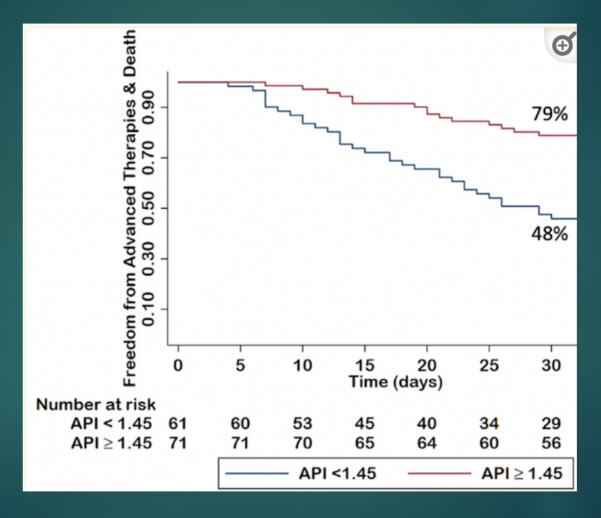
- Therefore, usually use indirect Fick or <u>thermodilution</u>
 - ► TD → thermal registering device measures changes in temp distal to proximal injection of saline of known temp and volume
 - Preferred method, even if TR or low CO
 - Indirect Fick → uses estimated values for O2 uptake from patient populations that were lean and homogenous (regarding age and race)
 → not the most applicable to HF, PH, obese population

Understand Hemodynamics: CO/CI by Thermodilution

Principle: Time to normalize RV temp after injection of cold saline will vary according to CO

- ▶ \uparrow time = ↓ output
- \oint time = \uparrow output

Calculations Focused on LV Performance


- ▶ CO → normal 4.0-8.0 L/min
- ► CI = CO/BSA → normal 2.5-4.0 L/min/m2
- SV index = CI/HR X 1000 → normal is above 35 mL
- ► CPO = [(MAP-RAP) X CO)]/451 \rightarrow Abnormal if under 0.6
- Aortic Pulsatility Index (API) = (SBP DBP)/PCWP -> under 1.45 is abnormal

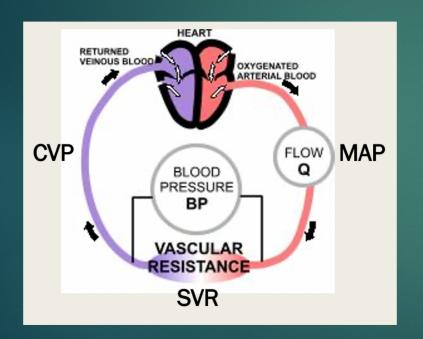
Should We be Using API Over CPO in HF-CS?

HF-CS is a distinct pathophysiologic entity from AMI-CS

- Area within PV loop represents stroke work, which correlates with CPO
- In AMI-CS, acute drop in contractility → reduction in SV → CPO decreases (CPO highly prognostic)
- ▶ Remodeling over time (RAAS) → volume retention, ventricular dilation, increased LVEDV → restores near-normal SW (CPO), but PV loop shifts right
- AS PV loop shifts right, efficiency of heart (SW/ (potential energy + SW)) decreases
- API accounts for loading conditions and cardiac efficiency, a feature absent in CPO

API

The RV!!!!!!


PAPI (PA Pulsatility Index)

- ► (PASP PADP)/RAP
- Abnormal cutoff depends on population
 - >2.0 is normal
 - <0.9 predicts RV failure and in-hospital mortality in inferior MI</p>
 - <1.5-1.8 predicts RV failure in LVAD</p>
- ► RA/PCWP
 - ▶ >0.6 associated with RV failure

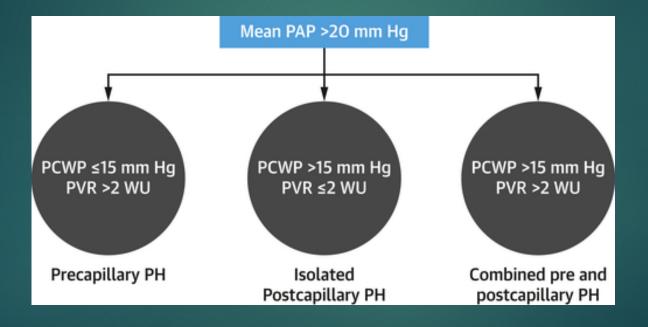
HD Profiles of Shock

Hemodynamic Variables	Preshock Normotensive Hypoperfusion ^{25,26}	Preshock Hypotensive Normoperfusion ²⁶	LV Dominant Shock ¹	RV Dominant Shock ^{23,24}	BiV Shock ²⁴
Systolic arterial pressure, mm Hg	>90	<90	<90	<90	<90
CVP, mm Hg	Variable	Variable	<14	>14	>14
PCWP, mmHg	Variable	Variable	>18	<18	Variable
CVP/PCWP	Depends on degree of LV and RV involvement	Depends on degree of LV and RV involvement	<0.86	>0.86	>0.86
PAPi (PAS – PAD)/RA ^{24,28–30}	Depends on degree of RV involvement	Depends on degree of RV involvement	>1.5	<1.5*	<1.5
Cardiac index, L/min/m²	<2.2	≥2.2	<2.2	<2.2	<2.2
SVR, dynes-s/cm ⁻⁵	>1600	800–1600	800–1600	800–1600	800–1600
CPO, W ²⁷	Variable	Variable	<0.6	<0.6	<0.6

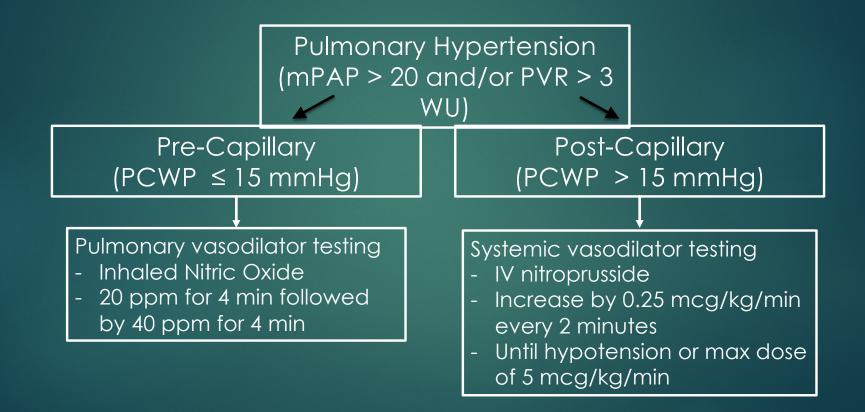
Vascular Resistance

- Resistance = $\Delta P / Q$
- ► △P is the difference in pressure across the circulatory bed
- Systemic vascular resistance (SVR) = (MAP – RAP)/CO
- Pulmonary vascular resistance (PVR) = (mPAP – PCWP)/CO
 - mPAP PCWP = transpulmonary gradient (normal < 12 mmHg)</p>
- These equations give results in Wood units
 - Multiply by 80 to get metric units in dyne*sec*cm^-5

Vascular Resistance


SVR

- Normal is 800-1200 dyne*sec*cm^ 5
- Increased
 - Cardiogenic shock
 - ► HTN
- Decreased
 - ► AVF
 - Vasodilation (sepsis, thyrotoxicosis)
 - Inappropriately high CO (cirrhosis)

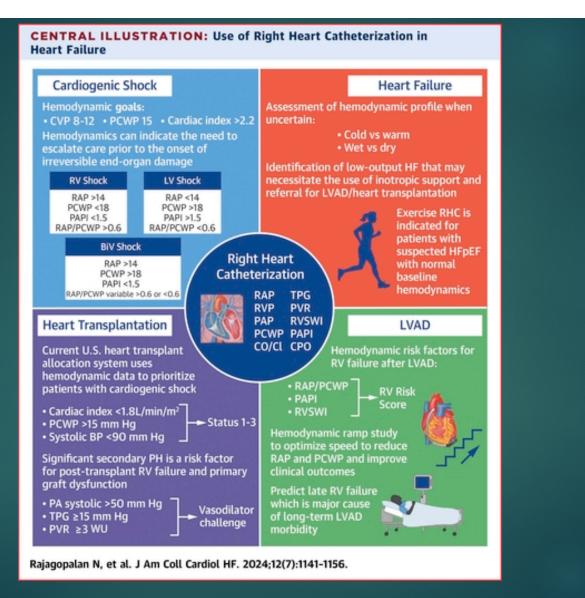

PVR

- Normal <2 WU (<240 dyne*sec*cm^-5)
- ▶ Increased in PHTN

Pulmonary Hypertension

Vasodilator Testing Algorithm

Pulmonary Vasodilator Responsiveness


- Decrease in the mean PAP of at least 10 mmHg to a value of less than 40 mmHg during inhaled nitric oxide
- Indicates potential responsiveness to calcium channel blocker therapy in primary pulmonary hypertension

Systemic Vasodilator Testing

- Evaluate response to vasodilator therapy in patient with left sided heart failure
- Ensure that PVR is reversible in patients being evaluated for heart transplant
- Irreversible PVR > 4-5 mmHg is a contraindication to transplant
 - Indicates intrinsic pulmonary vascular remodeling and is a risk factor for graft failure after transplant

Equations to Know for RHC

- Transpulmonary gradient
- ► PVR (in WU)
- SVR (in dyne * s/cm²)
- PAPi
- ► CPO
- API

